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The theoretical equations required for the experimental determination of the complete set of piezo- 
electric constants from X-ray measurements are presented. For this purpose the expression for the 
quantity (30JOE), where 0 denotes the Bragg angle and E the magnitude of an applied electric field is 
calculated as a function of the field direction and the reflecting lattice plane normal. For all 20 crystal 
classes exhibiting the piezoelectric effect explicit expressions are given for the longitudinal and transverse 
piezoelectric effect, corresponding to parallel-field and perpendicular-field reflection, respectively. For 
the 19 piezoelectric classes of the monoclinic, orthorhombic, tetragonal, trigonal, hexagonal and cubic 
systems explicit expressions for (O0/OE) in terms of the Miller indices of the reflecting planes are given 
for the simplest crystal cuts with respect to the symmetry elements present. The use of the equations is 
illustrated by a numerical example dealing with a crystal of symmetry mm2. 

Introduction 

It has been shown by Bhalla, Bose, White & Cross 
(1971) that piezoelectric constants may be determined 
directly by using X-rays to measure the elastic strain 
induced in a piezoelectric crystal by a static electric 
field. By this method these authors have measured the 
piezoelectric constant dlt of a-quartz and found good 
agreement with earlier data obtained with other meth- 
ods. As pointed out by Bhalla, Bose, White & Cross 
(1971), the X-ray method has several advantages over 
other methods. Among these are its ready applicability 
to small crystals (about 1 x 1 x 0.1 mm) and the pos- 
sibility to distinguish spontaneous and induced strains 
in ferroelectric crystals and to determine the piezoelec- 
tric constants of individual domains. In addition, the 
X-ray method avoids some of the potential difficulties 
associated with other methods, such as the occurrence 
of mode coupling in the widely used resonance-anti- 
resonance method (see, e.g., Mason, 1950). 

It is the purpose of the present paper to present the 
theoretical equations for the X-ray determination of 
the complete set of the piezoelectric constants for 
crystals of all twenty crystal classes which exhibit the 
piezoelectric effect. 

Theoretical derivation 

Bragg's form of the condition for constructive reflec- 
tion of an incident X-ray beam by a lattice plane with 
Miller indices hkl and interplanar spacing dhkt is given 
by 

n2 
sin 0 -  2dnkz ' (1) 
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where 

and 

1 
- 6 / , i , / =  (C, , , , l .  C,,,,,) '/~ (2)  

dhkt 

Gkk z = ha* + kb* +/c* (3) 

denotes a reciprocal lattice vector, a*,b*,c* are the 
base vectors of the reciprocal lattice defined by 
a .  a*=  1, a .  b*=0 ,  etc., where a,b,c are the unit-cell 
vectors of the direct space lattice. If, as in equation (1), 
the order of the reflection appears explicitly the Miller 
indices must be assumed to consist of coprime integers 
(i.e. of integers without a common factor except unity). 

By applying an electric field E with components 
E,=E~, (~, being the direction cosines, and r =  1,2,3 
denotes three Cartesian coordinate axes) to a crystal, an 
elastic strain eu(i,j=l,2,3 ) is induced through the 
converse piezoelectric effect according to (Nye, 1957) 

8ij--=drijEr , (4) 

dr u denotes the third-rank tensor of the piezoelectric 
strain constants, and the summation convention is used 
here and subsequently (i.e. summation over the three 
values 1,2,3 is implied for every pair of identical in- 
dices). Of course, the components E, of the electric 
field E and of the strain tensor eu, and the set of piezo- 
electric constants d,u must be referred to a common 
Cartesian coordinate system with axes, xl, x2,xa. 

In order to obtain the dependence of the reciprocal 
interplanar distance d~l  on strain eu, consider the 
matrices A and A* composed of the unit-cell vectors of 
the direct and reciprocal lattices, respectively, accord- 
ing to 

[axbtc~ IambicS\ 
A=|a2b2c~_ I , A *= ia~b~c~  I . (5) 

\aabac3/ \a~b~c~] 

The relations a .  a * = l ,  a .  b*=0,  etc. can then be 
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written in matrix notation as 

AA *r = ArA * = I , (6) 

where the superscript T denotes the transpose matrix, 
and I the unit matrix. 

In the approximation of the linear theory of elasticity 
under the influence of a strain e the base vectors change 
according to a(e)= (I + e)a(0), etc., where e denotes the 
strain tensor air in matrix notation. Therefore, the 
direct and reciprocal base vector matrices change ac- 
cording to 

A(e) = (I + e)A(0) (7a) 

A*(c)-- (I + ~)- aA*(0)___ (I - c)A*(0). (7b) 

In the spirit of the linear theory of elasticity, higher 
than first powers of e have been neglected in the last 
step of equation (7b). 

According to (7b) a reciprocal lattice vector Ghkz 
changes according to 

Ghk,(e) = (I --  e)Ghkz(0) • (8) 

Therefore, 

Ghk,(e). G~,kt(c)=G~k~(O). Ghk,(0) 
- 2[G~,k,(0). eGnk,(0)] (9) 

and 
G~,kt(e) = Ghk,(O)[l - (N.  8N)], (10) 

where 

N -  Gnkt (I I) 
a~,k l 

denotes the normal of the lattice plane (hkl). 
In view of equations (1), (2), (4) and (10) the diffrac- 

tion angle 0 depends on the magnitude E of the electric 
field, 0 =  0[c(E)], so that one obtains by differentiation 
(summation convention!) 

o r  

(cO In sin 0 [01_n Ghk,] [_Oe!!] /cOE~.] 
c~E ) = \ cOei.i / ~,cOE,! \ COE I ' 

(cOO) -o~,N, Njd,,j . cot 0 ~ = (12) 

This relation is the generalized form of equation (6) of 
the paper by Bhalla. Bose, White & Cross (1971). For 
the special case that both the direction of the electric 
field and the reflecting lattice plane normal are in the 
xl direction, ~,=c~,, Ni =ci u, N j = c ~  (6m, denotes the 
Kronecker symbol, i.e. C~m,= 1 for m = n =  1,2,3, and 
c~,,, = 0 for m ¢ n ) ,  equation (12) becomes equivalent to 
equation (6) of these authors. 

Equation (12) provides the theoretical basis for the 
experimental determination of the complete set of 
piezoelectric constants of any piezoelectric material. In 
order to determine the complete set of piezoelectric 
constants the dependence of the reflection angle 0 on 
the magnitude of the electric field must be measured 
for a set of combinations of directions a ,N equal in 

number to, or if redundancy checks are desired, larger 
than the number of independent piezoelectric constants 
corresponding to the crystal class of the material under 
investigation. 

In order to eliminate electrostriction the measure- 
ments should be carried out with field reversal which 
changes the sign of equation (12), but not of the qua- 
dratic electrostriction effect. 

Application of the electric field requires a set of thin 
platelets of the piezoelectric materials with plane par- 
allel electroded faces, so that the direction of one of the 
two face normals of opposite directions coincides with 
the direction of a=(cqe273) of the electric field. In 
practice, the direction of the reflecting lattice planes is 
restricted to the two cases N[la and N_l_a. While the 
former case, corresponding to the reflecting lattice 
planes parallel to the platelet faces, utilizes the longi- 
tudinal piezoelectric effect and is more convenient ex- 
perimentally, it will be shown that, with the exception 

m ~  m 

of four crystal classes (6,6m2, 23, 43m) the complete set 
of piezoelectric constants cannot be determined in this 
manner. On the other hand, the second configuration, 
which utilizes the transverse piezoelectric effect and 
corresponds to the electric field lying in the reflecting 
planes, requires larger experimental effort to eliminate 
distortion of the electric field near the side faces of the 
sample, but permits the determination of the complete 
set of piezoelectric constants for all twenty piezoelectric 
crystal classes. 

In the following section explicit expressions of the 
right-hand side (r.h.s.) of equation (12) will be given 
for all twenty piezoelectric crystal classes and for both 
experimental configurations. 

Appl i ca t ion  to p iezoe lec tr i c  crysta l  c las ses  

Denoting for convenience the r.h.s, of equation (12) 
by L and T for parallel-field and perpendicular-field 
reflection, corresponding to the longitudinal and trans- 
verse piezoelectric effects, respectively, equation (12) 
may be rewritten as 

where 

( cOO ) = ft(allN) (13) 
- c o t  0 ff~- [T(a_I_N)' 

L = N ,  NiNfl,  ij ( a = N )  (14a) 

T=7rNiNjdri ~ (a . N = 0 ) .  (146) 

For the numerical application of these equations the 
form of the piezoelectric constant tensor corresponding 
to a particular crystal class must be used, and both the 
lattice plane normal N and the direction a of the electric 
field must be expressed in terms of the Miller indices. 
For the components of the unit vector N the corre- 
sponding relation is obtained from equations (3) and 
(11) and is for the general triclinic case given by the 
familiar expression [International Tables for X-ray 
Crystallography (1959)] ( i= 1,2, 3): 
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N~ = ha* + kb~ + lc*/[hEa .2 + k2b .2 + 12c .2 

+ 2klb*c*cos o~* + 2hla*c* cos fl* + 2hka*b* cos y*]l/2. 
(15) 

Here a*,b*,c* denote the lattice constants, and 
~*,fl*,7* the angles between the unit-cell vectors 
a*, b*, e* of the reciprocal lattice, a~', b~, e[ (i-- 1,2, 3) 
denote the Cartesian coordinates of a*,b*,e*, respec- 
tively, in the same coordinate system to which the 
piezoelectric constant tensor is referred. 

For parallel-field reflection the unit vector a is deter- 
mined by the condition ~t--N'. For perpendicular-field 
reflection ~ is constrained by the condition ~t. N = 0 .  
Thus for a given lattice plane (hkl) the vector ~t has one 
degree of freedom, which may be conveniently des- 
cribed by the angle 9 according to 

~=cos  ~0U+ sin ~V,  (16) 

where U is a unit vector perpendicular to N lying in the 
plane generated by the unit vector e3 in the xa direction, 
and by the lattice plane normal N, and V is perpendic- 
ular to both U and N. The vectors U and V are then 
given by 

U=[-(ea.N)N+ea]/(N2x+N22)l/2 (17a) 

V = U  x N .  (17b) 

Inserting (17a) and (17b) into (16), the components e. 
of the unit vector a may be expressed in terms of the 
components N~ of the lattice plane normal and of the 
angle ~0 according to 

ax = - (NxN3 cos ~0+ N 2 sin ~o)/(N 2+ N2) ~/2 (18a) 

e2 = -(N2N3 cos q~-N~ sin ~o)/(N2+N2) a/2 (18b) 

~" A t 2 .  Ar2at/2 (18c) 0~3 = k.~v 1 w ~ ,  2 / COS (/9 . 

As will be discussed below, for most crystal classes 
convenient choices of the angle ~0 are possible if at 
least one of the Miller indices is zero. In these cases the 
vector ~t lies along symmetry directions of the crystal, 
and a considerable simplification of the equations 
given below results. 

By using the form of the piezoelectric tensor corre- 
sponding to the individual crystal classes as given, for 
example, by Nye (1957) the expressions L and T de- 
fined in (14a) and (14b) may be explicitly written out as 
given below for the twenty piezoelectric crystal classes. 
In the following, the piezoelectric constants will be 
expressed in Voigt notation, that is, the index pair ij 
in dri J (with r, i , j= 1,2, 3) is replaced by a single index 
/z=1,2,3;  4; 5; 6 corresponding to ij=11,22,33; 23 
and 32; 13 and 31 ; 12 and 21, respectively, and a factor 
of two is introduced for/z = 4, 5, 6, such that dr. = d,~j 
for/z = 1,2, 3, and dr. = 2d~j for/z = 4, 5, 6. The follow- 
ing abbreviations are introduced in order to describe 
the coefficients of the piezoelectric constants occurring 
in the expression for T for the tetragonal, trigonal, 
hexagonal and cubic systems: 

A+ = [ - 2 N ,  NzN~ cos ~o 

+(N~-N22) sin ~,j'ANa/~/tN2+ N 2 ~ 1 / 2 1  2J (19a) 

A_ = - Na,.rN2 + 22 sin (p (19b) 

= - N3(N1 + N 2 )  1/2 c o s  9 B+ 2 2 (19c) 

B_ -- - [ ( N  z -  mz)m3 cos tp 

+ 2NaN2 sin ~o]N3/(N 2 + N2) 1/2 (19d) 

C+ = ( N  2 + N2) 3/2 cos q) (19e) 

C_ =(N12- U2) trU2~ + U2~/2w cos ~o (19f) 

3 1 =  - [ (m~-3N2)NIN3 cos (o 

+ ( 3 N I - N ~ ) N z  sin ~o]/(N~ + N2z) m (19g) 

D2=[(3N2-N2)N2N3 cos ~o 

- ( N 2 - 3 N ~ ) N I  sin 9]/(m~+N~) 1/2 (19h) 

E =  {[3(Xl  + N22) - 2]N~N2 cos ~0 

+ ( N i -  N~)N3 sin ~o}/(m 2 + mz) ~/z (19i) 

F =  2 2 + N 2 2 ) 1 / 2  Na(mx cos ~ (19j) 

G=N~N2(N 2 + N2) ~/2 cos ~o. (19k) 

The description of the direction a of the electric field 
in terms of the angle ~o as given in equation (18), and 
the use of the (0-dependent quantities defined in equa- 
tions (19a) to (19k) are limited to the case NCe3. For 
N = e3 the angle ~0 is not defined. However, the special 
case N3=% is of interest only for the triclinic and 
monoclinic systems, and the quantity T defined in 
equation (14b) becomes in this case 

T=e~dla + oczd23 . (20) 

On the other hand, for the tetragonal, trigonal, hexag- 
onal and cubic systems the quantity T is identically 
zero for N - % ,  so that this case need not be considered 
explicitly. 

Triclinic system 
Class 1 (C1). (Eighteen independent constants: du, d,2, 

d13. d14. d15. dl~. d21. d22. d,3. d~4. d25. d2~. d~. d~2. d~. d3,. 
d35, d36.) 

L =  m~d~ + Nxm2(d~2 + d26) + N~m~(d~3 + d35) 
2 3 2 + mlm2(d2~ + d~6) + m2d22+ m~m~(d2~+d3.) 
2 2 3 + N~N3(d3x +d~5)+ m2N3(d32 + d2,) + Mad33 

+ NaNzN3(d14 +dm + d36) (21a) 

T=alN2dll  + oqm~d12 + oqm~d13 

+ o~2N2d21 + o~zm22dz2 + o~2m~dza 

+ o~3N 21d3~ + o~3N 2d322 + a3NZd33 

+ ~xX~X~dx4 + ~N~m3d~ + ~miX2d~6 

+ ~m~m~d~4 + ~X~X3d2~ + ~Nim~d~ 
+ ~m~m~d~4 + ~3x~m~d~ + ~x~m~d~ . (21b) 

A C 3 2 & - 4  
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Monoclinic system 
Class 2((72). (Eight independent constants: dx4, d16, 

d2~, d22, d23, d25, d34, da6.) 
L =  m~d22 + N~N2(d2~ + dx6) + N2N](d2a + da4) 

+ N~ NzN3(d~4 + des + d36) (22a) 
2 2 T=o~2N~d2~ + ~2Nzd22 + o~2N2d2a 

+ ~N~N~d~ + ~.m##x6 + ~N~N3d~ 

+ ~aN2Nad34 + cqN~N2da6. (22b) 

Class m(Cs). (Ten independent constants: dn, d~2, d~a, 
d~, d~4, d~, d~,, d3~, d~, d~.) 

L =  m~dn + N~N2(d~2 + d26) + N~m2(dxa +das) 
+ m2Na(da~ +d~5)+ m2N~(daz+d24)+ m]da3 (23a) 

T=oq N2dn + oq N2d~2 + ax N2d~3 

+ ~3Nid~ + ~N~d~ + ~N2d~3 + ~N~N~d~ 

+o~2N2Nf124 +o~zNiN2d26 +o~aN~Nad~s . (23b) 

Orthorhombie system 
Class 222(D2). (Three independent constants: d~a, 

d2s, d36.) 
L =  N~N2Na(d~4 + d2s + da6) (24a) 

T = ~  N2N~d~a + cc2NIN~d2s + a~NI N~da, . (24b) 

Class mm2(C2o). (Five independent constants: d~, 
d~,, d3~, d~,, d~.) 

L =  N2N3(d3i + d~5) + mzN3(d32 + d2,) + m2daa (25a) 

T= o~3N2d3t + aaN2da2 + o~3N2da3 

+ cqN~Nfl~s + a2N2Nfl2,. (25b) 

Tetragonal system 
Class 4(C,). (Four independent constants: dx,, d~s, 

da~, d3a.) 
L = ( N I  + N2)Na(da~ +dxs)+ N]daa (26a) 

T=C+d3~+Fdaa+A_d~4+B+d~s . (26b) 

Class -4(S~). (Four independent constants: d~4, dxs, 
d~, d~.) 

L = ( N ~ -  N2)Na(d3~ + d~s) + N~N2Na(2d~4 + da6) (27a) 

T= C_da~ + A +d~4 + B_d~s + Gd3~ . (27b) 

Class 422(D4). (One independent constant: d~4.) 
L = 0  (28a) 

T=A_d~4 . (28b) 

(Three independent constants: Class 4mm(C4v). 
d~, d~. d~.) 

L = ( N  i + N~)N~(dz~ + d~5) + N]dz3 

T= C + d~ + Fd~3 + B + d~s . 

(29a) 

(29b) 

Class 42m(D2a). (Two independent constants: dl4, 
d36.) 

L =  N1N2N3(2d~4 + d36) (30a) 

T= A + d~4 + Gd36 . (30b) 

Trigonal system 
Class 3(Cs). (Six independent constants: dn, dl4, dis, 

d22, d~l, d~3.) 

- - Nz)N2d22 + N3d33 L = ( N  2 3N22)NIdn_(3N~ 2 a 

+ (N 2 + N2)N3(d3~ + dis) (3 la) 

T= h~dn + Ozdz2 + C+ d31 + FD33 + A _ d~4 + B + dis .(31 b) 

Class 32(D3). (Two independent constants: dn, d~4.) 

L = ( N  2 -  3m2)N~dn (32a) 

T = D l d n + A _ d 1 4 .  (32b) 

Class 3m(C3v). (Four independent constants: das, d22, 
d31, d3a.) 

L =  - ( 3 N ~ - N2)Nzd22 

+ (N 2 + U2)N3(d31 + dxs) + U]da3 (33a) 

T=D2d2z+C+da~+Fdaa+B+das. (33b) 

Hexagonal system 
Class 6((76). (Four independent constants: d14, d15, 

d31, d33.) 
L = ( N 2  + N2)N3(d3~ + d~s) + N]d33 (34a) 

T=C+d3~+Fd33+A_d~4+a+d~5. (34b) 

Class "6(C3h). (Two independent constants: dn, d22.) 

L = ( N 2 -  3 N 2 ) N ~ d n - ( 3 N 2 -  N2)N2d22 (35a) 

T= Oxdn + Dzdz2. (35b) 

Class 622(D6). (One independent constant: d~4.) 

L = 0  (36a) 

T=A_dI4 . (36b) 

Class 6mm(C6o). (Three independent constants: dxs, 
da,, d33.) 

L=(N~ + N2)N3(dat + d~s) + N~d33 (37a) 

T= C +d3t + Fd33 + B +d~s . (37b) 

Class ~m2(D3~). (One independent constant: dn.) 

L = ( N  i -  3N~)N~dn (38a) 

T= D~dn . (38b) 

Classes 23(T) and 43m(Td). (One independent con- 
stant: all,.) 

L =  3N~NzNad~4 (39a) 

T=Ed~, . (39b) 
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As mentioned above, equations (26b), (27b), etc. to 
(39b) are valid only for N # e3, and for N = e3 the quan- 
tity T in these equations is identically zero. 

Equations (21a) to (39a) represent the most general 
form of  the expressions for the longitudinal piezo- 
electric effect for the 20 piezoelectric crystal classes. 
Each lattice plane (hkl) is characterized by its effective 
piezoelectric coefficient L = L ~ t ,  which for triclinic 
symmetry is obtained by inserting equation (15) into 
equation (21a), and for the crystal classes of  higher 
symmetry by inserting the simplified form of  equation 
(15) appropriate for the particular crystal symmetry 
into the corresponding equations (22a) to (39a). For 
each lattice plane (hkl) the electric field coefficient 
- c o t  O(80/SE) of the Bragg angle 0 = Ohk I gives accord- 
ing to (13) an experimental value for the corresponding 
linear combination L~k, of piezoelectric constants. 
While no further simplification is possible for triclinic 
symmetry, it will be shown below that for the crystal 
classes of  higher symmetry the expressions for L given 
by equations (22a) to (39a) may become much simpler 

if one or two of  the Miller indices are zero. However, 
in several instances the coefficients of  the piezoelectric 
constants in the expressions for L vanish, unless all 
three Miller indices are nonzero. Thus for the exper- 
imental determination of  the complete set of  piezo- 
electric constants the most general form of  the expres- 
sions for L as given in equations (21a) to (39a) has to 
be used. 

Similarly, equations (21b) to (39b) represent the most 
general form of  the expressions for the transverse piezo- 
electric effect in terms of the components of  the re- 
flecting lattice plane normal N, the direction a of  the 
electric field, and the coefficients A +, A_, etc. defined 
in equations (19a) to (19k). According to equations 
(18a) to (18c) the components of a, and according to 
equations (19a) to (19k) the coefficients A+,A_,  etc. 
depend on the components of N and on the free param- 
eter ¢0 defined in (16). The components of  N, in turn, 
depend on the Miller indices according to (15). Thus 
all coefficients of  the piezoelectric constants in the ex- 
pressions for T depend on the Miller indices in a rather 

Table 1. Crystal plate normal a = (~1~2~a), Miller indices (hkl), face normal of reflecting plane N = (N~N2N3), and 
expressions for L and T defined in equations (14a) and (14b) fo r  monoclinic system ( a*=  1/a sin fl; b * =  1/b; 

c*= 1/c sinfl; C = c o s f l ;  S = s i n f l )  
The base vectors b and e coincide with the Y and Z axes, respectively, and the base vector a lies in the X-Z plane, forming an 

angle fl > 90 ° with the e axis. 

Class 

(010) (0k0) (010) 

(hOZ) (~o;) 2(C 2) 

(8 constants) (001) (hk0) (~n0) 

(q~0) (hk0) (~rl0) 

m(C s) 

(10 constants) 

(100) (hO0) (lO0) 

(OkO) (010) 

(001) (hkO) (~qO) 

(~0) (hk0) (~n0) 

(~0~) (hOZ) (~o;) 

(~o;) (hOZ) (to;) 

~;~;~;R L,T 

~=(ha*-Ec*C)/RI~=~c~S/R 

R=[h2a*2+£2c*2-2hga*c*C] I/2 

~=ha*IR;n=kb*/R 

Rf[h2a,2+k2b,2] I/2 

~=ha*/R;~fkb*IR 

R=[h2a,2+k2b,2] 1/2 

~=(ha*-£c*C)/R;nfkb*/R;~f£c*S/R 

R=[h2a,2+k2b,2+E2c,2_2h%a,c,C] I/2 

~=ha*/R;n=kb*/R 

R=[h2a,2+k2b,2] 1/2 

~=ha*/R;~=kb*/R 

R=[h2a,2+k2b,2ll/2 

~=(ha*-~c*C)/R;~=~c*S/R 

R=[h2a*2+~2c*2-2h~a*c*C] I/2 

~=(ha*-%c*C)/R;~=%c*S/R 

2 2 2 2 1/2 ~=[h a* +~ c* -2h~a*c*C] 

~=(ha*-~c*C)/~i~=kb*/R;~f£c*S/R 
2 ,2 2 ,2 2 ,2 1/2 R=[h a +k b +~ c -2h~a*c*C] 

L=d22 

Tffi~2d21+~2d23+~d25 

T=~qd36. 

Tf~3d21+~n2d22-~n2d16 

Lffin3d22%~2n(d21+d16)+n~2(d23+d34)+~n~(d14+d25÷d36 ) 

L=dll 

T=dl2 

Z=~2d31+q2d32 

Zf-~2qdll-U3d12+~2~d26 

T=-~2~dll-~3d13+~3d31+~;2d33-~2dls+~2;d35 

L=~3dll+~2(d13+d35)+~2;(d31+d15)+;3d33 

(d +d )+~2(d +d )+~2;(d +d )+ L=~3dll +~n2 12 26 13 35 31 15 

+n2~(d32+d24)+~3d33 

A C 32A - 4* 
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involved manner. While for triclinic symmetry the 
equations have to be used in this form, a considerable 
simplification occurs if one or two of the Miller indices 
are zero. However, for the two monoclinic crystal 
classes 2 and m the coefficients of some piezoelectric 
constants (those of d14 and d34 for class 2, and of d24 for 
class m) vanish in these special cases. Therefore the 
complete set of piezoelectric constants cannot be deter- 
mined solely from measurements of the transverse 
piezoelectric effect perpendicular to these special lattice 
planes. In these cases one has to use the general form 
of equations (22b) and (23b) for the transverse piezo- 
electric effect or, alternatively, supplement the equa- 
tions for the transverse piezoelectric effect for the 
special set of lattice planes with one Miller index zero 
by the general equations (22a) and (23a) for the longi- 
tudinal piezoelectric effect. 

In Tables 1 to 5 the simplified relations obtained 
from equations (22a) and (22b) to (38a) and (38b) are 
presented that result for the longitudinal and transverse 
piezoelectric coefficients L and T in the monoclinic, 
orthorhombic, tetragonal, trigonal and hexagonal 
classes if at least one of the Miller indices is zero. For 
the monoclinic and orthorhombic classes the general ex- 
pressions for the longitudinal piezoelectric coefficients 
L have also been included because they are needed 
for the experimental determination of the complete set 
of piezoelectric constants. For completeness, the equa- 

tion for L for the two isometric classes 23 and 43m is 
also presented as Table 6. The explanation of Tables 1 
to 6 is given below. 

The simpler equations presented in Tables 1 to 6 are 
sufficient for the experimental determination of the 
complete set of piezoelectric constants for all crystal 
classes, except for triclinic symmetry. Therefore the 
general form of the equations (22a) and (22b) to (39a) 
and (39b) need not be considered in the design of actual 
experiments. It may happen in certain cases, however, 
that for the lattice planes with at least one Miller index 
zero that are listed in Tables 1 to 6 the structure factor 
may be inconveniently small, or vanish exactly. In 
these cases and for triclinic symmetry one has to resort 
to the general equations (21) to (39). 

It is apparent from equations (21a), (22a), etc. to 
(39a), that some of the piezoelectric constants enter the 
expressions for L only in the form of linear combina- 
tions, so that the complete set of piezoelectric con- 
stants cannot be determined from parallel-field reflec- 
tion measurements (Gt=N) alone. Exceptions are the 
four classes 6, 6m2, 23 and 43m, for which the quantity 
L depends on the individual piezoelectric constants 
only, so that they can be determined from parallel-field 
reflection alone. For all other classes, perpendicular- 
field reflection measurements (a .  N = 0 )  are required 
in addition to, or instead of, parallel-field reflection 
measurements. 

Table 2. Crystal plate normal ¢L = (~1~2~), Miller indices (hkl), face normal of reflecting plane N = (N, NzNa) 
and expressions of L and T defined in equations (14a) and (14b) for orthorhombie system 

Class 

222(D 2) 

(3 constants) 

mm2(eZv) 

(hkZ) 

(zoo) (Ok~) (one) 

(010) (h0~) (~0~) 

(001) (hk0) (~n0) 

(00i) (hk0) (~nO) 

(ooz) (ooi) 

(5 constants) (~0~) (h0~) (~0~) 

(o~n) (Ok~) (One) 

~;~;~;R L,T 

n=k/bR;~=£1cR 

R=[k/b)2+(£/c)2] I/2 

~=h/aR;~=%/cR 
R=[(h/a)2+(£1c)2] I/2 

~=h/aR;q=k/bR 
R=[ (h/a) 2+(£1c) 2] 112 

~=h/aR;Q=k/bR;~=I/cR 

R=[(h/a)2+(k/b)2+(~/c)2] I/2 

~=h/aR;n=k/bR 

R=[(h/a)2+(k/b)2] I/2 

~=h/aR;~=%/cR 

R=[(h/a)2+(%Ic)2] I/2 

~=k/bR;~=~/cR 

R=[(k/b)2+(~/c)2] I/2 

~=h/aR;q=k/bR;~=~/cR 

R=[(h/a)2+(k/b)2+(~/c)2] I/2 

T=q~dl4 

T=~d25 

T=~nd36 

L=~n~ (d14+d25+d36) 

~=~Zd31+n2%2 

L=d33 

T=~3d31+~2d33-~2d15 

T=n3d32+n~2d33-n~2d24 

L=~Z~(d31+d15)+n2~(d32+d24)+~3d33 
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Another noteworthy feature of  the above equations 
is that for the six classes 4, 422, 3, 32, 6, 622, the piezo- 
electric constant d14 does not enter the equations for L 
and therefore cannot be determined at all from parallel- 
field reflection measurements. 

According to equations (21b), (22b), etc. to (39b) the 
quantity T depends in all cases on all individual piezo- 
electric constants. Exceptions are particular directions 
of  N and/or values of  ~0, for which some of the coef- 
ficients given in equations (19a) to (19k) may become 
equal, or vanish. In general, however, it is possible to 
determine the complete set of piezoelectric constants 
from a sufficiently large number of perpendicular-field 
reflection measurements alone. In practice, however, 
it is desirable to use as many parallel-field reflection 
measurements as possible, because the specimen prep- 
aration is simpler and experimental errors may be ex- 
pected to be smaller in this case. 

Specimen orientation 

For the measurement of the longitudinal piezoelectric 
effect crystal platelets with electroded pairs of  (hkl) 
faces with normal N = a  are required. For the trans- 
verse piezoelectric effect platelets with electroded pairs 
of  faces with normal a perpendicular to the normal N 
of the reflecting (hkl) face must be prepared. In both 
cases it is desirable to choose the direction N, and in 
the second case also the direction a, along high-sym- 
metry directions (parallel to rotation axes, perpendic- 
ular to or within mirror planes) so as to achieve accu- 
rate orientation and reduce the effort required for the 
orientation and preparation of the platelets. However, 
since either or both piezoelectric effects may vanish 
along some symmetry directions the requirement of  
non-vanishing piezoelectric effect eliminates many 
otherwise suitable lattice planes. It is further desirable 

Table 3. Crystal plate normal a = (~l~2~a), Miller indices (hkl), face normal of reflecting plane N = (N1N2N3), 
and expressions for L and T defined in equations (14a) and (14b)for tetragonal system 

Class ~ (hk£) N $;q;~;R L,T 

(zoo) (Ok~) 

4(C 4) 

(4 constants) 

4(s 4) 

(4 constants) 

422(D 4) 

(i constant) 

4mm(C4v) 

(3 constants) 

~2m(D2d) 

(2 constants) 

(ooz) 

(~o0 

(zoo) 

(ool) 

(~o0 

(zoo) 

(ooz) 

(ooz) 

(hk0) 

(h0Z) 

(Ok~) 

(hk0) 

(h0Z) 

(Ok~,) 

(ooz) 

(hk0) 

(one) 

(ooz) 

(Cno) 

({o0 

(one) 

(~no) 

(~o0 

(OnO 

(ool) 

(~qo) 

n = k/aR;~=%/cR 

R=[(k/a)2+(~/c)2] I/2 

C=h/R;q=k/R 
R=[h2+k2] I/2 

~=h/aR,~=£/cR 

R=[(h/a)2+(Z/c)2] I/2 

q=k/aR;~=%/cR 
R=[(k/a)2+(£/c)2] I/2 

~=h/R;n=k/R 

R=[h2+k2] I/2 

~=h/aR;~=£/cR 
R=[(h/a)2+(£/c)2] I/2 

n=k/aR;~=£/cR 

R=[(k/a)2+(£/c)2] I/2 

~=h/R;n=k/R 
R=[h2+k2] I/2 

T=n~dl4 

I~d33 

T=d31 

T=~3d31+~2d33-~2d15 

T=N~dI4 

T=(~2-q2)d31+~d36 

T=~3d31"~2d15 

T=q~dl4 

L=d33 

T=d31 

(~oc) 

(zoo) 

(ooz) 

(hOZ) 

(OkZ) 

(~o~) 

(OnO 

$=h/aR;~=£/cR 

R=[ (h/a) 2+(ilc) 2] i12 

(hk0) (Cno) 

n=k/aR;~=£/cR 
R=[(k/a)2+(£/c)2] I/2 

~=h/R;n=k/R 
R=[h2+k2] I/2 

T=~3d31+~2d33-~2d15 

T=n~dl4 

T=~qd36 
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that for a given platelet normal a several non-equiva- 
lent side faces (hkl) exist, which lead to different linear 
combinations of piezoelectric constants in the expres- 
sion for the transverse piezoelectric coefficient T. 
Ideally, it would be desirable to determine the complete 
set of piezoelectric constants from one polygon-shaped 
crystal platelet with several side faces, so as to require 
only one pair of electroded surfaces for measuring the 
longitudinal piezoelectric effect in the direction of the 
plate normal a, and the transverse effect for several 
non-equivalent side face normals N. Unfortunately, 
this ideal design is possible only for some of the high- 
symmetry crystal classes. In general, more than one 
type of crystal platelet is required for determining the 
complete set of piezoelectric constants. In this case it is 
desirable to perform the measurements mostly, or if 
possible, exclusively, on the basis of the longitudinal 
effect, because the corresponding platelets require only 

one pair of parallel faces and are therefore easier to 
prepare than platelets for the measurement of the 
transverse effect, and because measurements of the 
longitudinal effect can be done more accurately and 
more easily than those of the transverse effect. As men- 
tioned above, this can only be achieved for the four 
classes 6, 6m2, 23 and 43m. 

For the triclinic system no symmetry directions exist, 
so that (at least) 18 platelets corresponding to 18 dif- 
ferent face normals a are required. Since according to 
equation (21a) the longitudinal piezoelectric coefficient 
L depends on 10 linear combinations of piezoelectric 
constants, 10 of the 18 platelets may be chosen such 
that their faces correspond to 10 different (hkl) planes. 
The remaining (minimum of) eight platelets must be 
prepared for the transverse piezoelectric effect in such 
a manner that the normals a of the pair of large elec- 
troded surfaces are perpendicular to eight different 

Table 4. Crystal plate normal a = ((X1~2~3) , Miller-Bravais indices (hkl), for hexagonal indexing, face normal of 
reflecting plane N=(N1NzN3), and expressions L and T defined in equations (14a) and (14b)for trigonal system 

Class ~ (hkZ) 

(i00) (2h,h,0) (i00) 

3(C 3) (0k~) (Oq~) n=2k/~aR;~=%/cR 

R=[(4/3)(k/a)2+(£/c)2] I/2 

(6 constants) (010) 

32(D 3) 

(2 constants) 

3m(C3v) 

(4 constants) 

(ooz) 

(OkO) (010) 

(2h,h,Z) (~0~) 

(00%) (OOl) 

(2h,k-h,O) (~qO) 

(One) (Ok%) (On{) 

(O~n) (Ok~) (onO 

(zoo) 

(010) 

(OO1) 

(onO 

(@n) 

(2h,h,0) (i00) 

(OkZ) (One) 

(0k0) 

(00Z) 

(2h,k-h,0) 

(Ok~) 

(Ok£) 

(OLO) 

(ooi) 

({no) 

(ono 

(OnO 

~;n;~;R L,T 

~=2hlaR;~=Z/cR 

R= [ (2h/a) 2+(£/c) 2] 1/2 

~=¢~h/R;n=k/R 

R= [3h2+k 2 ] i/ 2 

n~2k/v~aR;~=E/cR 

R=[(4/3)(k/a)2+~/c)2] I/2 

~=2k/vr3aR;~=I/cR 

R=[(4/3)(k/a)2+~/c)2] I/2 

n=2klC~aR;~=%/cR 

R=[(413)(kla)2+%/c)2] I/2 

~=¢r3h/R;n=k/R 

R=[3h2+k2] I/2 

n=2k/~aR;~=E/cR 

R=[(4/3)(k/a)2+(£/c)2] I/2 

~=2k/~aR;~=%/cR 

R=[(4/3)(k/a)2+(%/c)2] I/2 

L=dll 

T=-n2dzl+q~dl4 

L=d22 

T=-~2d22-~d14 

L=d33 

T=d31 

L:q3d22+~3d33+~2~(d31+d15 ) 

T=-n2~d22+~2d33+q3d31,~2d15 

L=dll 

T=-~2dll+n~dl4 

L=d22 

L=d33 

T=d31 

L=n3d22+~3d33+n2~(d31+d15 ) 

T=-~2~d22+q~2d33+n3d31-q~2d15 
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(hkl) side faces. The resulting piezoelectric coefficients 
depend on the orientation of  the crystallographic axes 
with respect to the Cartesian coordinate system chosen. 
It is recommended to use the base vectors of  the direct 
and reciprocal lattice according to the 1949 I.R.E. 
convention (Standards on Piezoelectric Crystals, 1949): 

a = ( a  sin ,6, 0, a cos ,6) 
b = ( - b  sin ~ cos 7", b sin ~ sin y*, b cos ~) 
c = (0, 0, c) 
a * =  (a* sin 7", a* cos 7", 0) 
b * =  (0, b*, O) 
c* = ( - c *  sin c~* cos ,6, c* cos ~*, c* sin ~* sin ,6).  

Here (International Tables for X-ray Crystallography, 
1959): 

bc sin 
a * -  - -  , etc. 

V 

V=2abcsin a+,6+7 sin -=+fl+7 
2 2 

× sin ~ - , 6 +  7 sin ~--+fl----7-~ 
2 2 

cos c~* = (cos ,6 cos 7 -  cos c0/sin ,6 sin 7, etc. 

and further ~ > 90 °, ,6 > 90 °. 
For the symmetry classes of  higher symmetry the 

1949 I.R.E. convention (Standards on Piezoelectric 

Table 6. Crystal plate normal, Miller indices (hkl), 
face normal of reflecting plane N = (N1N2N3), and 
expression L defined in equation (14a) for isometric 

c l a s s e s  23 a n d  43m 
¢t (hkl) N ~; ~!; ~; R L 

(~0 (hkl) (~rlO ~ = h/R; ~l = k /R;  ~ = l /R 3~r/Cd~4 
R = [h 2 + k 2 + 12] */2 

Table 5. Crystal plate normal a = (al~z0%), Miller-Bravais indices (hkl), face normal of reflecting plane 
N=(N1NzN3), and expressions L and T defined in equations (14a) and (14b)for hexagonal system 

Class ~ (hk£) ~ ~;q;~;R L,T 

(i00) (0k{) 

6(C 6) 

(4 constants) 

6(C3h) 
(2 constants) 

622(D 6) 

(i constant) 

6mm(C6v) 

(3 constants) 

6m2(D3h) 
(i constant) 

(oo1) 

(onO 

(oo£) 

(2h,k-h,0) 

(One) 

(oo1) 

({nO) 

q=2kl~aR;~=i/cR 

R:[(4/3)(kla)2+(£/c)2] I/2 

~:¢~h/R;n=k/R 

R=[3h2+k2] I/2 

T=n~dl4 

L=d33 

T=d31 

(o~n) 

(ioo) 

(OLO) 

(i00) 

[ (oo1) 
i 

(onO 

(o~n) 

(iO0) 

(Ok~) 

(Ok~) 

(2h,h,0) 

(0k0) 

(Ok~) 

(ooz) 

(2h,k-h,0) 

(0k£) 

(Ok~) 

(2h,h,0) 

(onO 

(one) 

(zoo) 

(OLO) 

(one) 

(oo1) 

(~no) 

(ono 

(ono 

(100) 

n=2k/v~aR;~=£/cR 

R=[(4/3)(k/a)2+(g/c)2] I/2 

n=2k/vr3aR;~=£/cR 

R=[(4/3)(k/a)2+(g/c)2] I/2 

q=2k/v~aR;~=£/cR 
R=[(4/3)(k/a)2+(i/c)2] I/2 

~=/3h/R;n=k/R 
R=[3h2+k2] I/2 

n=2k/cr3a_R;~=£/cR 

R=[(4/3)(k/a)2+(£/c)2] I/2 

n=2k/~'~aR;~=i/cK 

R=[(4/3)(k/a)2+(£/c)2] I/2 

L=~3d33+B2~(d31+d15 ) 

T=q~2d33+q3d31-n~2d15 

L=dll 

L=d22 

T=n~dl4 

L=d33 

T=d31 

L=dll 

T=~2d33+~3d31-~2d15 

L=~3d33+q2~(d31+d15 ) 
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Crystals, 1949) is easily summarized as follows. The 
twofold axes of class 2(C2) and the mirror plane normal 
of class m(Cs) coincide with the crystallographic b axis, 
which is placed along the positive Y direction of a 
right-handed Cartesian coordinate system. The c axis is 
placed along the positive Z direction, and the a axis 
(being normal to the b axis and forming an angle 
fl> 90 ° with the c axis) is lying in the XZ plane. For the 
orthorhombic, tetragonal and cubic systems the crystal- 
lographic axes coincide with the Jr, Y and Z axes. For 
the trigonal and hexagonal systems the threefold (or 
sixfold) axis is parallel to the Z axis, and the positive 
X axis coincides with any of the three secondary axes 
a ,  a2,a3 perpendicular to the threefold (or sixfold) 
axes. The Y axis is perpendicular to the X and Z axes, 
so as to form a right-handed Cartesian coordinate 
system. 

Discussion of  Tables 1 to 6 

For the remaining 19 piezoelectric crystal classes the 
existence of symmetry elements reduces not only the 
number of independent piezoelectric constants, but 
also leads to the existence of high-symmetry directions 
a with non-vanishing longitudinal and/or transverse 
piezoelectric effect. In Tables 1 to 6 such pairs of high- 
symmetry directions a, N, the associated Miller indices 
hkl and the quantities L or Tdescribing the longitudinal 
and transverse piezoelectric effect as defined in equa- 
tions (14a) and (14b) are listed for the crystal classes 
of the monoclinic, orthorhombic, tetragonal, trigonal, 
hexagonal and cubic systems, respectively. In the crystal 
classes of lower symmetry the number of high-symme- 
try directions is too small for determining the complete 
set of the piezoelectric constants. In these cases the ex- 
pressions for both a and N and for the associated values 
of L and/or T are also given for a general set of Miller 
indices. 

The results in Table 1 indicate that for the class 
Cz(2) the eight independent constants may be deter- 
mined from five crystal platelets. From one platelet 
with orientation a=(010)  it is possible to determine 
the four constants d21, dz2, d23 and dzs, but for the re- 
maining four constants d~4, d16, d34 and da6 one crystal 
plate each is required. If the platelet with orientation 
a=(010)  has three side faces corresponding to three 
sets of non-equivalent Miller indices hOl, measurement 
of the longitudinal effect gives dzz, and of the transverse 
effect perpendicular to each of the three side faces gives 
three linear combinations each of the constants dzl, d2a 
and d25. Of the remaining four measurements three may 
be made by using the longitudinal effect and give (if the 
above mentioned constants d21, d22, d2a and d25 have 
been determined independently) the constants d16, da4, 
d14+d36. In order to determine the constants d14 and 
d36 individually, one additional measurement based on 
the transverse effect is required. 

For the determination of the 10 independent con- 
stants of class Cs(m) nine platelets with different orien- 
tations are required. While the platelet with a=(100)  

permits to determine dll through the longitudinal effect, 
and d12 through the transverse effect, the remaining 
eight constants require for their determination one 
platelet each. While five linear combinations of these 
constants (d26 , 6/13-I-da5, d31 d-d15, d32 + d34, d33) may be 
determined from the longitudinal effect, the remaining 
three independent measurements must be based on the 
transverse effect. 

As shown by the data in Table 2 the three indepen- 
dent piezoelectric constants of class 222 have to be de- 
termined from the transverse effect by using three 
different crystal platelets with faces normal to the three 
coordinate axes, respectively. The longitudinal effect 
on a platelet with a pair of general (hkl) faces permits 
an independent measurement of the sum d14 + d2s + da6. 

The determination of the five independent constants 
for class mm2(C2v) is illustrated below with the aid of 
a numerical example. 

The discussion of Tables 3 to 6 for the remaining 
crystal classes proceeds along the same lines as above 
and need not be explicitly presented here. 

Numerical example 

In order to illustrate and facilitate the use of Tables 1 
to 6 the expressions for L and T required for the deter- 
mination of the five independent constants of 
Bi3TiNbO9 (crystal class ram2) will be given here. The 
crystal structure of Bi3TiNbO9 has been refined from 
X-ray and neutron diffraction data by Wolfe, Newn- 
ham, Smith & Kay (1971). These authors list the ob- 
served and calculated absolute values of the structure 
factors of a large number of non-equivalent reflections, 
from which suitable high-intensity reflections can be 
selected. 

According to Table 2 the three constants da~, d32 and 
d3a can be determined from one platelet with a pair of 
electroded (001) faces, if the longitudinal effect is 
measured by Bragg reflection on the (001) face, result- 
ing in d3a, and if the transverse effect is measured by 
Bragg reflection on two different side faces of the type 
(hkO), which gives two different linear combinations of 
dat and da2. Based on the structure factors listed by 
Wolfe, Newnham, Smith & Kay (1971) we select the 
three reflections 0p0,10, 040, and 400. The correspond- 
ing face normals N are (0,0,1), (0,1,0) and (1,0,0), 
respectively. From the lattice constants a=5.431, b =  
5'389 and c -25 '050  A given by Wolfe, Newnham, 
Smith & Kay (1971) the corresponding Bragg angles 
are calculated for Cu Ke radiation and are listed in 
Table 7, together with the values of hkl, with the struc- 
ture factors, and with the values of the platelet normal 
tt and the values N of the three reflecting lattice planes. 
In Fig. l(a) the shape and orientation of the platelet 
with faces corresponding to these three normals and 
the corresponding Bragg angles 01, 02 and 0a are illus- 
trated schematically. Also listed in Table 7 are the 
corresponding values of L and T obtained from the 
last column of Table 2. According to equation (13) 
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these quantities are equal to the electric field coefficient 
- c o t  O~(OO~/OE) ( i=1,2,3)  of the associated Bragg 
angle. Denoting the experimental values of the electric 
field coefficient by M~ (i= 1,2, 3) the three piezoelectric 
constants d33, d32 and d31 are then given by the first 
three equalities listed in the last column of Table 7. 
According to Table 2 the remaining two constants d15 
and d24 have to be determined from the transverse 
piezoelectric effect on two different platelets with side 
faces (hOl) and (Okl), with the corresponding normals 
of the side faces (~0() and (0r/0, respectively, and with 

normals (~0~)and (0-(1/) of the electroded main faces 
In the fifth column of Table 2 the components (~r/~) of 
these two normals are expressed in terms of the hkl 
values. On the basis of the structure factors listed by 
Wolfe, Newnham, Smith & Kay (1971) we select the 
reflections 0t2tl0 and 2p0,10. In Table 7 their structure 
factors, the normals N of the side faces and the normals 
a of the electroded main faces as calculated from col- 
umns 2, 4 and 5 of Table 2 are listed together with the 
associated Bragg angles 04 and 05. The orientation of 
these two platelets and the location of the two Bragg 

~oo~o II ~' Ele_~ct ric f i e l d ~  

a 

(a) 

G'4oo 

k.-.~j 

y 

a 

~) 

/ 

b OlO c 

Electric field ~ ' J  
o J 

(c) (d) 

Fig. 1. Orientation of four crystal platelets showing electroded faces as hatched areas and indicating location of six reflecting 
(hkl) faces with their associated reciprocal lattice vectors Gnkt, wave vectors K and K' of incident and scattered beam, respect- 
ively, and Bragg angles 01,02 . . . . .  06, required for measurement of six independent electric field coefficients - c o t  0t 
(OOdOE) as chosen in Table 7 for determining the five piezoelectric constants of Bi3TiNbO9 (class ram2). (Figures are 
schematic and not to scale.) (a) (001) platelet for determining electric field coefficient of 01 through longitudinal piezo- 
electric effect, and of 02 and 03 through transverse piezoelectric effect; (b) platelet for determining electric field coefficient 
of 04 through transverse piezoelectric effect; (c) platelet for determining electric field coefficient of 05 through transverse 
piezoelectric effect; (d) (115) platelet for determining electric field coefficient of 06 through longitudinal piezoelectric effect. 
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Table 7. Miller indices hkl, calculated structure factors IFcl [in units given by Wolfe, Newnham, Smith & Kay 
(1971)],face normals N of crystal platelets representing reflecting lattice planes, face normals a of  electroded 
crystal platelet surfaces, representing direction of  electricfieM E, label i denoting six different experimental con- 
figurations, Bragg angle O~ for Cu Kc~, type of piezoelectric effect (L = longitudinal, T= transverse), and l.h.s, and 
r.h.s, of  equation (12), consisting of  electric field coefficients Ml = - cot O~(30J3E) (to be determined experimen- 
tally) and of linear combination c~,N~Njd, tj of piezoelectric constants for Bi3TiNbO9, as obtained from entries of  

Table 2 for crystal class mm2(C2o) 

hkl I Fcl N = (NI, Nz, N3) a = (~1, ~z, ~3) i 0t Type -- cot O,(OOdOE) = o~, N~Njd ,,~ 
0 0 10 836 (0, 0, 1) (0, 0, 1) 1 17"909 ° L Ml=dss 
0 4 0 683 (0, 1, o) (0, o, 1) 2 34.873 T M2=da2 
4 0 0 668 (1, 0, 0) (0, 0, 1) 3 34"565 T Ms=d31 
0 2 10 785 (0, 0.6809, 0.7324) (0, -0.7324, 0.6809) 4 24-826 T M4=O'3157daz 

+ 0"3652(d3a- d24) 
2 0 10 796 (0"6780, 0, 0"7350)  (-0"7350, 0, 0"6780) 5 24"731 T Ms=0"3117dal 

+ 0"3663(d33 - d~5) 
2 2 10 633 (0"5598, 0"5642, 0"6069) (0"5598, 0"5642, 0"6069) 6 30"445 L M6=O'1902(d3~+dls) 

+ 0" 1932(d32 + d24) + 0"2235d3s 

angles 04 and 0s is illustrated in Fig. l(b) and (c). The 
last column of Table 7 gives the corresponding expres- 
sions for the quant i ty  T obtained from the last column 
of Table 2. If experimental values of the electrical field 
coefficient M ~ = - c o t  Oi(c~Ot/OE) are available for all 
five Bragg angles 0~ ( i=  1 , 2 , . . . ,  5) described, the equa- 
tions given in the last column of Table 7 for 
M 1 , M 2 , . . . , M s  represent five equations for the five 
unknown piezoelectric constants d33, d32, da~, d24 and 
dis. 

According to Table 2 an additional independent  
measurement  of the longitudinal effect on a general 
(hkl) plane gives a linear combinat ion of  all five piezo- 
electric constants. Choosing for this purpose the 2,2,10 
reflection gives the entries listed on the last line of 
Table 7. The platelet orientat ion and the Bragg angle 
06 are illustrated in Fig. l(d). The six expressions for 
M,,  M2,. • . ,  M6 listed in Table 7 represent six equations 
for the five unknown piezoelectric constants. Their  best 
values can be obtained from a s tandard simultaneous 
least-squares fit. 

For  better accuracy addit ional platelets representing 
different values of (Ok/), (hOl) or (hkl) may be used 
ad lib. It should be noted that  for a given (hkl) face 
higher-order and lower-order reflections corresponding 
to different Bragg angles may be measured and should 
give the same value for the electric field coefficient. 
For  example, the longitudinal field coefficient of all 
(00l) reflections should be equal to da3 for any value 
of I. While the lower-order reflections 002, 004, 006, 008 

are of  lower intensity than the 0,0,10 reflection, the re- 
flection 0,0,20 is also relatively strong and may be used 
to obtain an additional independent  value for daa. 

In order to reduce the experimental errors arising 
from the specimen orientation it appears more ap- 
propriate,  however, to use additional crystal platelets 
representing different values of (Okl), (hOl), or (hkl), 
which would lead to different numerical coefficients of  
the piezoelectric constants in the equations for M4, 
M5 and 3'/6, respectively. 

It is a pleasure to acknowledge several interesting 
and stinmlating discussions with Professor L. E. Cross 
and to thank Professor R. E. Newnham for a critical 
reading of  the manuscript  and for his comments  on the 
comments  of the reviewer. 
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